CHLORINE AND ITS COMPOUNDS

MARKING SCHEME

- 1. i) Anhydrous calcium chloride ii) A white ppt is formed HCl gas forms Cl⁻ ions solution which react with silver ions to form silver chloride which is insoluble OR HCl_(aq) + AgNo_{3(aq)} \longrightarrow HNO_{3(aq)} + AgCl_(s) \checkmark 1mk White ppt \checkmark $\frac{1}{2}$ Cl⁻_(aq) + Ag⁺_(aq) \longrightarrow Agcl_(s)
- 2.a) Potassium manganate VII (¹/₂) Manganese IV Oxide (¹/₂) Lead IV Oxide (¹/₂)
 b) It is a bleaching agent

3. a) Oxidizing agent b) $4HCl_{(aq)} + MnO_{2(s)}$ $MnCl_{2(aq)} + Cl_{2(g)} + 2H_2O_{(l)}$

4. a) $2OCI_{(aq)} \longrightarrow 2CI_{(aq)} + 0_{2(g)} \checkmark 1$

b) Time candle brightness √1 Colourless liquid (droplets) forms on walls √1
c) polypropene √ ½ Making ropes √ ½ Polytetraflouroethene Tetraflouroethene √ ½

Gas laws

- 1. X: $t_1 = 28.3sec$ $Q_2: t_2 = 20.0sec$ $T \propto MM$ $T \propto MM$ $T_2 = \sqrt{32}$ $\left(\frac{T_1}{T_2}\right)^2 = \frac{X}{32}$ $\left(\frac{28.3}{T_2}\right)^2 = \frac{X}{32}$ $X = \frac{28.3^2 \times 32}{400}$
- 2. (a) The rate of diffusion of a gas is inversely proportional to the square root of its density under the same conditions of temperature and pressure

(b) Rate of gas
$$V = \frac{1}{5} \times \frac{100 \text{ cm}}{10 \text{ sec}}$$

 $= 2 \text{ cm/sec} \quad \sqrt{\frac{1}{2}}$
Rate of $W = \underline{10 \text{ cm}}$
 10 sec
 $= 1 \text{ cm/sec} \quad \sqrt{\frac{1}{2}}$
 $\frac{RV}{RW} = \boxed{\frac{MW}{MV}}$
 $= \underline{2}$
 $1 = \boxed{\frac{MW}{16}}$
 $2^{2} = \underbrace{\frac{MW}{16}}$
 16
 $\frac{4}{1}$
 16
 16
 1
 $MW = 64$

3. (a) The volume of a fixed mass of a gas is directly proportional to its absolute temperature at constant Pressure

(b) Apply combined gas law;
$$\underline{P_1V_1} = \underline{P_2V_2}$$

 T_1 T_2
 $V_1 = 3.5 \times 10^{-2} \text{ m}^3$ $V_2 = 2.8 \times 10^{-2} \text{m}^3$
 $P_1 = 1.0 \times 10^5 \text{Pa}$ $P_2 = 1.0 \times 105 \text{Pa}$
 $T_1 = 291 \text{K}$ $T_2 = ?$
 $T_2 = \underline{P_2V_2T_1}$
 P_1V_1
 $T_2 = \underline{1.0 \times 10^5 \text{Pa} \times 2.8 \times 10^{-2} \text{m}^3} \times 291 \text{K}$

$$1.0 \times 10^5 Pa \times 3.5 \times 10^{-2} m^3$$

 $T_2 = 232.8 k$ \checkmark

- 4. $\frac{\text{TsO}_2}{\text{TO}_2} = \frac{R.M.N.SO_2}{R.M.MO_2} \, \frac{D/2}{R}$ $SO_2 = 32 + (16 \times 2) = 64 \, \frac{D}{2}$ $O_2 = (16 \times 2) = 32 \, \frac{D}{2}$ $\frac{\text{TsO}_2}{50} = \sqrt{\frac{64}{32}} \, \frac{D}{2} = 70.75 \, \frac{D}{2}$
- 5. a) The rate of diffusion of a fixed mass of a gas is inversely proportional to the square root of it density at constant temperature and pressure

b) RHCl =
$$\frac{30 \text{ cm}^3}{20 \text{ se}}$$
 = 1.5 cm³ see
 $\frac{20 \text{ se}}{20 \text{ se}}$
RHCL = $\frac{\sqrt{MSO_2}}{\sqrt{MHCL}}$
(1.5)² $\sqrt{64}$
RSO₂ = $\sqrt{36.5}$
(RSO₂)² = 2.25×36.5
 64
RSO₂ = $\sqrt{2.25 \times 36.5}$
 64
1.133 cm/sec
1.133 cm/sec
1.133 cm³ 1 sec
 $42 \text{ cm}^3 = \frac{42 \times 1}{1.133}$
= 37 sec

- 6. a) Boyles' law For a fixed mass of a gas, volume is inversely promotional to pressure at constant temperature
 - b)

100

7.

c)
$$\underline{P_1V_1} = \underline{P_2V_2} \sqrt{\frac{1}{2}} \quad V_2 = \underline{P_1V_1} \quad X \underline{T_2} \sqrt{\frac{1}{2}} \\ T_1 \quad T_2 \quad T_1 \quad P_2 \\ \underline{250 \ X \ 273 - 23} \\ 273 + 127 \quad \sqrt{\frac{1}{2}} \\ = 156.5 \text{ cm}^3 \\ a) \text{ RFM of } CaCO_3 = 40 + 12 + 48 \\ = 100 \text{ kg}. \sqrt{\frac{1}{2}} \\ \therefore 100 \text{ kg of } CaCO_3 \equiv 22.4 \text{ dm}^3 \text{ of } CO_2(g) \\ 1000 \text{ kg} \quad T \quad P_2 \\ = 22.4 \times 1000 \quad \sqrt{1} = 224 \text{ dm}^3 \sqrt{\frac{1}{2}} \\ \end{cases}$$

8.
$$T_1 = 23 + 273 = 296$$
 $T_2 = -25 + 273 = 248$
 $V_1 = 200 \text{ cm}^3$ $V_2 = ?$
 $P_1 = 740 \text{ mmHg}$ $P_2 = 780 \text{ mmHg}$
 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
 $\frac{740 \times 200}{1} \sqrt{1} = \frac{780 \times ?}{248} \sqrt{1}$
 296 248
 $\therefore x = \frac{740 \times 200 \times 248}{296 \times 780}$
 $= 158.974 \text{ cm}^3 \sqrt{1}$ (penalize ½ mark for units)

- 9. $\frac{Rk}{Rs} = \sqrt{Ms}$ $\frac{Rk}{Rs} = \frac{\sqrt{Ms}}{Mk}$ $\therefore \frac{12}{7.2} = \sqrt{x}\sqrt{\frac{1}{2}}$ $7.2 \quad 16$ $X = \frac{12^2}{7.2^2} \times 16\sqrt{\frac{1}{2}}$ $= 44.464\sqrt{4}$
- 10. (a) When gases combine they do so in volume which bear a simple ratio to one another and to the product if gaseous under standard temperature and pressure
- 11. a) Rate of diffusion is whereby proportional to molecular mass of a gas. $\sqrt{1}$

b)
$$\frac{TCO_2}{TCO} = \sqrt{\frac{MCO_2}{MCO}} \sqrt{\frac{1}{12}}$$
$$\Rightarrow \frac{200}{T} = \sqrt{\frac{44}{28}} = \sqrt{\frac{44}{28}} \sqrt{\frac{11}{28}} \sqrt{\frac{1}{12}}$$
$$\Rightarrow \frac{200}{T} = \frac{11}{7}$$
$$\Rightarrow T = \sqrt{\frac{7}{11}}$$

⇒ $T = 200.0.79772^{\sqrt{1/2}} = 159.5$ Seconds. $^{\sqrt{1/2}}$

MOLE CONCEPT

MARKING SCHEME

1. a) Moles of Zinc used

$$Moles = \frac{Mass given}{Molar mass} = \frac{1.96g}{65.4} = 0.0299 \text{ moles of } Zn \text{ used } \sqrt[4]_2$$

$$\cdot \text{ Moles of Hydrochloric acid used.}$$

$$1000 \text{ cm}^3 \longrightarrow 0.2 \text{ moles Hcl}$$

$$\cdot \cdot 100 \text{ cm}^3 \longrightarrow 0.2 \text{ moles of Hcl}$$

$$\frac{100 \times 0.2}{1000 \text{ cm}^3} = 0.02 \text{ moles of } Hcl \text{ acid used.}$$

$$\sqrt[4]{2}$$

$$\cdot \text{ Thus Zinc metal was in excess } \sqrt{1}$$
b) If 65.4g of Zinc metal $\sqrt{\frac{1}{2}}$

$$\frac{1.96g \text{ or Zinc metal}}{65.4g}$$

$$22.4 \text{ litres at S.T.P}$$

$$\frac{1.96g \text{ s} 22.4 \text{ litres } \frac{1}{2}}{65.4g}$$

$$0.6713 \text{ litres of } H_2 \text{ gas } \sqrt{\frac{1}{2}}$$

$$or$$

$$671.3 \text{ cm}^3 \text{ of } H_2 \text{ gas}$$

- 2. For Hydrogen, H₂, molar mass= 2g 2g $1 \text{mole}_{\frac{1}{2}}$ $10g \times 1 \text{mole}_{\frac{1}{2}}$ $\frac{10g \times 1 \text{mole}}{2g} = 5 \text{moles of } H_2 \text{ gas}$ For Nitrogen (IV) oxide gas, NO₂ Molar mass = 14 + 32 = 46g 1 mole of NO₂ \rightarrow 46g \checkmark $\frac{1}{2}$ \therefore 5 moles of NO₂ \rightarrow ? $\sqrt{1}_2$ $\frac{5 \text{moles } x \text{ 46g}}{1 \text{mole}}$
 - = 230g of NO₂ gas will occupy the same volume of 10g of H_2 gas
- 3. From the equation $2NH_{3(g)} + CO_{2(g)}$ Where; $2 \text{ moles of } NH_3$ 2(14 + 3) 2(17) $(NH_2)_2CO_{(aq)} + H_2O_{(1)}$ 1 mole of urea $(2 \times 14) + (4 \times 1) + (1 \times 12) + (1 \times 16)$ 28 + 4 + 12 + 16

 $34g \checkmark \frac{1}{2}$ Hence; 34g of NH₃ \longrightarrow 60g 1 mole of urea $\therefore 340000g \text{ of NH}_3$ \longrightarrow ? 10000 $\underline{340000g \times 1mole} \checkmark 1$ $\underline{34g}$ = 10,000 moles of urea $\checkmark \frac{1}{2}$

4. RFM of NaOH = 40 Moles of NaOH = ${}^{8}/_{40} = 0.2m \checkmark {}^{1}/_{2}mk$ Moles of NaoH in 25cm³ $\frac{25 \times 0.2}{1000} = 0.005 \checkmark {}^{1}/_{2}$

> Mole ratio 1: 2 Moles of acid = $\frac{0.005}{2}$ $\checkmark 1/_2$ 0.0025

$$1m = \frac{1 \times 0.245}{0.0025} \checkmark 1$$

=98 $\checkmark 1/2$

5. $CH_{4(g)}$: $O_{2(g)}$: $CO_{2(g)}$ 12.0 cm³ : 24cm³ : 36cm³ (1mk) 1cm³ : 2cm³ : 3cm³ 1vol : 2vol : 3vol which is a small (simple) whole number ratio according to Gay Lussac's law of combining volumes. (1mk)

6. $500 \text{ cm}^3 \ge 4.9 \text{ g}$

$$1000 \text{ cm}^{3} \ge \frac{1000}{500} \times 4.9g = 9.8g \qquad (1\text{mk})$$

if 0.3 molar w.r.t $H^{+}_{(aq)}$ then $\frac{0.3}{3}$ molar w.r.t acid since it is a tribasic acid

0.1mols =9.8g

$$1mol \equiv \frac{1}{0.1} \times 9.8 = 98g$$
 (1mk)
RMM of acid = 98 $\binom{1}{2}mk$

7.

 $24dm^3 = \frac{24}{1} \times 2.667g = 64.008g$ (1mark)

Rmm of gas x = 64.008 (no unuts) (1mark)

8. Mass per litre of NaOH = 7.5 g x 1000 = 30gdm³ Molarity of NaOH = 30/40 = 0.75 m ($\frac{1}{2}$)

> Moles of NaOH reacted = $0.02 \times 0.75 = 0.0015$ moles Moles of HCl used = $0.013 \times 1 = 0.013$ moles $\frac{1}{2}$ Moles of NaOH that should have been used = 0.013 moles Mass of NaOH reacted = $0.0015 \times 40 = 0.06g (\frac{1}{2})$ Mass of NaOH required = $0.013 \times 40 \% = 0.52g (\frac{1}{2})$ % purity of NaOH = $0.56 \times 100 \% = 11.54 \%$ 0.52

9. a)

	Ν	0
Mass %	30.4	69.6
No of moles	$\frac{3.04}{14} = 2.17$	$\frac{69.6}{16} = 4.35$
Mole ration	$\frac{2.17}{2.17} = 1$	$\frac{4.35}{2.17} = 2$

E.F of compound is NO₂ $\frac{1}{2}$ If 22.4dm³ of gas = 1 mole Then 1 dm³ of gas = 1/22.4 = 0.044 moles If 0.044 moles of the gas = 4.11g Then 1 mol of the gas = 1/0.044 x 4.11g = **92.064g OR** If 1 dm³ of gas = 4.11g Then 22.4dm³ of gas = 22.4 x 4.11g = 92.064g ($\frac{1}{2}$) E.F.M of No₂ = 14 + 32 = 46 N= M.F. M = <u>92</u> = 2 <u>46</u>

10.
$$2HCl_{(aq)} + Na_2CO_{3(aq)} = 2N\overline{aCl_{(aq)}} + H_2O_{(l)} + CO_{2(g)}$$
 [1
Moles of Na₂ CO₃ reacting = $\frac{1}{2} \times \frac{20 \times 0.5}{1000} = 0.005 \text{ moles}$ 1½
Moles of Na₂ CO₃ in 100cm³ = $\frac{0.005 \times 100}{25}$ 1½ = 0.02 moles 1½
Mass of Na₂CO₃ in the mixture = 0.02x 10.6
= 2.12g.1½

11. RFM of Na₂SO₃ is 126 \checkmark $\frac{1}{2}$

Number of moles of $Na_2SO_3 = \frac{25.2}{126} = 0.2 \checkmark \frac{1}{2}$

Number of moles of HCl = $\frac{700 \times 0.5}{1000} = 0.35 \checkmark \frac{1}{2}$ Reacting ratio is 1:2 \therefore 0.2 moles of Na₂SO₃ require 0.4 mole of HCl \therefore Reagent in excess is Na₂SO₃

12.	i) Concentration	Molarity	RFM	
	$g/l = \frac{9.42}{600} \ x \ 1000$	21.5 x 0.207 15.7		
		25	0.17802	
	= 15.7 g/l✓1	= 0.17802M√1	= 88.192 ≈88 ✓ 1	

ii) RCOOH = 88 R + 12 + 32 + 1 = 88 R = 88 - 45 R = $43\checkmark 1$

13. a) Equation for the reaction Moles of KOH = $\frac{25}{1000} \times 0.12 \checkmark \frac{1}{2}$ = 0.003 moles . Moles of acid $(H_2Y) = \frac{1}{2} \times 0.003$ $= 0.0015 \text{ moles} \sqrt{\frac{1}{2}}$ If 30cm³ contains 0.0015 moles $100 \text{ cm}^3 \text{ contains} = \frac{1000}{30} \times 0.0015 \checkmark \frac{1}{2}$ = 0.05 moles/l (0.05 M)b) Molarity = $\frac{mass / l}{R.F.M}$ If 500cm³ contains 3.15g 1000 cm³ contains $\frac{1000}{500} \times 3.15 \checkmark \frac{1}{2}$ = 6.30g/l $0.05 = \frac{6.30}{R.F.M}$...R.F.M = $\frac{6.30}{0.05} \sqrt{\frac{1}{2}}$ R.F.M = 126 √ ½

14.(a) (i) RMM ZnSO4 =
$$65+32+64 = 16101$$

moles of $Zn = \frac{65}{165} = 0.4037$ moles 01
(ii) Mass of water = $3.715 - 2.08$
 $= 1.635g01$
RMM H₂O = $2 + 16 = 18$
Moles of water = $\frac{1.635}{18} = 0.09083$ moles.

(iii) $ZnSO_4$ H_2O mass: <u>2.08</u> 0.0908311_{2} 161 0.01291 mole ratio : $\frac{0.01291}{0.1291}$ $\frac{0.09083}{0.01291} [] \frac{1}{2}$ 7.0350 ½ 1 1 7 R = 70 ½ (b) (i) RMM ZnSO₄.7H₂O = $161 + 7 \times 18 = 287g \square \frac{1}{2}$ 287g ZnSO4.7H2O = 65g = 0.015g $\frac{287 \times 0.015}{65} = 0.06623g$ (ii) Moles of $ZnSO_4.7H_2O = \frac{0.06623}{287}$ = 0.0002308 moles 5cm3 = 0.0002308moles 1000cm3 =? $1000cm^3 \times 0.0002308$ moles $5cm^3$ = 0.04616 M

Nitrogen and its compounds

- 1. (i) $4HN_3$ (g) + $5O_2$ (g) $4NO_{(g)}$ + $6H_2O_{(g)}$ (ii) Act as catalyst (iii) $Zn(NH_3)_4^{2+}$
- 2. a) Platinum/ copper
 - b) Brown fumes
 - Hot rod m continues to glow red
 - NO formed reacts with oxygen to form NO₂ (brown flames)

√

- Reaction highly exothermic
- 3. a) Calcium hydroxide b) $Ca(OH)_{2(g)} + 2NH_4CL_{(g)}$ 2 $NH_{3(g)} + CaCL_2 + 2H_2O_{(L)}$
- 4. (a) It neutralizes air to prevent violent combustion reaction from occurring.
 (b) Its inert and have very low b.pt of -196°C
 *MAT
- 5. a) X is Nitrogen. ^{√1}
 b) It is less dense than air. ^{√½}
 c) In preservation of semen in artificial insemination. ^{√1}
- 6. a) (i) Solution A contains $Pb^{2+}(aq)$ ions $\sqrt[4]{2}$ (ii) Solution B contains $Al^{3+}(aq)$ ions. $\sqrt[4]{2}$
 - b) A colourless liquid at cooler parts $\sqrt[1]{1}$ of test-tube is formed. - A white reside remains in the test-tube. $\sqrt[1]{1}$
- a) to expel air that is in the combustion tube so that oxygen in it does not react with hot copper√1
 b)brown√ ½ copper metal will change to black√ ½
 c)nitrogen √1
- 8. (a) To increase the surface area over which the reaction occurs hence increased rate of reaction. √1
 (b) NH₃ is basic and reacts with some moles of the acid hence reduction in concentration
- 9. (a) (i) The solution changes from <u>green</u> $\sqrt{1}$ to <u>brown</u> $\sqrt{1}$ (1 mk) (ii) A brown $\sqrt{1}$ precipitate is formed. (1 mk) (b) $Fe^{3+}_{(aq)} + 3OH^{-}_{(aq)} \longrightarrow Fe(OH)_{3(s)} \sqrt{1}$ (1 mk) 10. (a) – Absorbs carbon (IV) oxide from $\sqrt{1}$ the air. (1 mk) (b) 2 Cu_(s) + O₂ \longrightarrow 2CuO_(s) $\sqrt{1}$ (1 mk) 3 (c) Because it has the rare gases. $\sqrt{1}$ (1 mk)

1.

(a) Only single bonds between carbon atoms 1 [1] (b) (i) Water Carbon dioxide [2] (ii) No carbon or soot produced No nitrogen oxides produced No sulphur oxides produced No carbon monoxide produced [2]

2.

any two of: [2]

family of similar (organic) compounds /

with similar chemical properties /

presence of same functional group /

same general formula /

allow:compounds with a trend in physical properties

allow:difference of CH2between one member and another

[2]

3.				
		One general formula / same general formula; differ by CH ₂ ; similar chemical properties; gradual change in physical properties; Award [1] for any two from last three		
			tional group: atom or group of atoms responsible for the acteristic reactions of the molecule / homologous series;	3
4.	(a)	(i)	boiling point increases as number of carbons increases / <i>OWTTE</i> increased surface area / greater Van der Waals' forces / increase	
		(ii)	increased intermolecular forces / <i>OWTTE</i> ; exothermic / energy released / products have less energy than reactants;	2
	(b)	carb wate	on dioxide;	2

Total [5]

(a) (i) breaking down of molecules substances using heat [1] (ii) substance which speeds up a reaction [1] NOT: alters/changes rate of reaction NOT: speeds up and slows down rate (b) ethene/ethylene [1] NOT: formula (c) (i) paraffin [1] (ii) 4000g/4kg [1] (correct unit needed) (iii) C₂H₄; H₂ [2] (d) (i) two units polymerised with continuation bonds at either end and hydrogen atoms drawn [1] ALLOW: _CH₂CH₂CH₂CH₂ _ ALLOW: $[_CH_2CH_2 _] _ n$ ALLOW: [_CH₂] _ n (ii) addition (polymerisation) [1]

[Total 10m]

SULPHUR AND ITS COMPOUNDS

MARKING SCHEME

1. Barium carbonate reacts with dilute sulphuric (VI) acid to form the insoluble Barium sulphate (BaSO₄) which covers the reactant Barium carbonate preventing any contact between the acid and the carbonate salt. \checkmark 1 Hence, the reaction is slow and stops after a very short time. BaCO_{3(s)} + H₂SO_{4(aq)} \longrightarrow BaSO_{4(s)} + CO_{2(g)} + H₂O_{)(I)} Insoluble

2. The dye is oxidized to a new product with chlorine (1mk) but oxygen is removed to form an unstable product which gradually gets re-oxidized by atmospheric oxygen on exposure for sometime to air (1mk) in the case of Sulphur (IV) oxide.

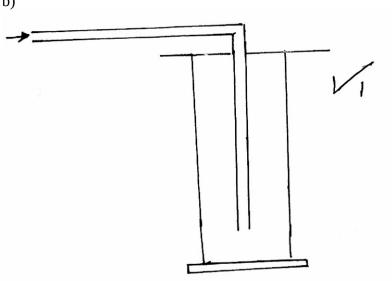
3. (a) Dehydrating agent (1mk) (b) Oxidizing agent (1mk)

4. 1 – Compressed hot air, in

- 2 Molten froth of Sulphur water mixture, out
- 3 Superheated water in

5. a) i) Dehydration $(\frac{1}{2})$ ii) Oxidation $(\frac{1}{2})$ b) $Cu_{(s)} + 2H_2SO_{4(1)}$ $CuSo_{4(aq)} + SO_{2(g)} + 2H_2O_{(1)}$ (1)

6. (a) Mass of acid = $\frac{75}{100} \times 1.84 \times 1000 = 1380$ g in 1000cm³


Morality $=\frac{1380}{98}$ = 14 .08m I $\frac{1}{2}$

(b)Moles of dilute acid = $0.25 \times 1 = 0.25 \times 1^{11} \frac{1}{2} = 0.25$ moles. $1^{1}\frac{1}{2}$ Volume = $\frac{0.25}{14.08} \times 1000$ $\frac{1}{2} = 17.756$ cm³ $\frac{1}{2}$ Penalize $\frac{1}{2}$ for wrong units

7. It reacts with ammonia ${\tt I}$ $\frac{1}{2}$ gas to form ammonium sulphate. ${\tt I}$ $\frac{1}{2}$ (b) Quick time / Ca OI

	(b) $SO_3(g) + H_2SO_4(l)$ (c) Vanadium (v) Oxide V ₂ O ₅	$H_2S_2O_7(l) 1$
9.	a) $3H_2S_{(g)} + H_2SO_{4(l)}$	$4H_2O_{(l)} + 4S_{(s)}$
	b) $H_2S \checkmark \frac{1}{2}r_1$ oxidized from	educing agent ; Sulphur in H ₂ S
	-2 to 0 (zero c) $Pb(C_2H_3O_2)_{2(aq)} + H^2S_{(g)}$ —	$\rightarrow PbS_{(s)} + 2C^2H_4O_{2(aq)}$

a) Hydrogen chloride√1 Sulphur (IV) oxide√1 9. b)

- 25.
- a) Frasch process ✓ 1
 b) Hot compressed air ✓ 1
 c) Monoclinic / prismatic sulphur / beta sulphur ✓ ½ Rhombic / octahedral sulphur / alpha sulphur ⁄ ½